Comparison of two approaches for the discretization of elastodynamic contact problems
نویسندگان
چکیده
The purpose of this Note is to compare two approaches for the discretization of elastodynamic contact problems. First, we introduce an energy conserving method based on a standard midpoint scheme and a contact condition expressed in terms of velocity. The second approach consists in considering an equivalent distribution of the body mass so that the nodes on the contact boundary have no inertia. We prove that this method leads to an energy conservation for the space semi-discretized elastodynamic contact problem. Finally, some numerical results are presented in the two dimensional case. Résumé Comparaison entre deux approches de la discrétisation du problème de contact en élastodynamique. Dans cette Note, on compare deux approches de la discrétisation du problème élastodynamique de contact. La première correspond à un schéma qui conserve strictement l’énergie du problème. Ce schéma résulte d’une méthode de point milieu standard avec une loi de contact exprimée en fonction de la vitesse. Dans la deuxième approche, on considère une distribution équivalente de la masse du corps de telle sorte que les points du bord de contact n’aient plus d’inertie. Ceci permet d’aboutir à une conservation de l’énergie pour le problème semi-discrétisé en espace. Enfin, on présente des tests numériques en dimension deux. Version française abrégée Le problème de contact élastodynamique semi-discrétisé en espace est décrit par le problème (1). La difficulté est que ce problème est mal posé (voir [6,7]). Pour retrouver l’unicité, une des méthodes bien adaptée aux corps rigides est l’introduction d’une loi d’impact avec un coefficient de restitution. L’approche s’avère moins satisfaisante dans le cas des corps élastiques déformables car, quelque soit le choix du coefficient de restitution, le problème (1) tend vers une restitution totale de l’énergie quand le pas d’espace tend vers zéro (voir [1] pour plus de détails).
منابع مشابه
Time-Discontinuous Finite Element Analysis of Two-Dimensional Elastodynamic Problems using Complex Fourier Shape Functions
This paper reformulates a time-discontinuous finite element method (TD-FEM) based on a new class of shape functions, called complex Fourier hereafter, for solving two-dimensional elastodynamic problems. These shape functions, which are derived from their corresponding radial basis functions, have some advantages such as the satisfaction of exponential and trigonometric function fields in comple...
متن کاملA Modified Decoupled Semi-Analytical Approach Based On SBFEM for Solving 2D Elastodynamic Problems
In this paper, a new trend for improvement in semianalytical method based on scale boundaries in order to solve the 2D elastodynamic problems is provided. In this regard, only the boundaries of the problem domain discretization are by specific subparametric elements. Mapping functions are uses as a class of higherorder Lagrange polynomials, special shape functions, Gauss-LobattoLegendre numeric...
متن کاملDual reciprocity BEM and dynamic programming filter for inverse elastodynamic problems
This paper presents the first coupling application of the dual reciprocity BEM (DRBEM) and dynamic programming filter to inverse elastodynamic problem. The DRBEM is the only BEM method, which does not require domain discretization for general linear and nonlinear dynamic problems. Since the size of numerical discretization system has a great effect on the computing effort of recursive or iterat...
متن کاملMimetic discretization and higher order time integration for acoustic, electromagnetic and elastodynamic wave propagation
This paper is devoted to the simulation of acoustic, electromagnetic and elastodynamic wave propagation problems in a unified manner. We focus on the finite integration technique for the spatial discretization of the first-order wave equation systems using lowest order elements. A universal framework of staggered grids is set up in which the application of the finite integration technique for a...
متن کاملA Posteriori Error Estimates for a Neumann-neumann Domain Decomposition Algorithm Applied to Contact Problems
Contact problems are frequent in structural analysis. They are characterized by inequality constraints such as non-interpenetration conditions, sign condition on the normal constraints, and an active contact, an area that is a priori unknown. Several approaches exist for solving the non linear equations issued from the finite element discretization of frictionless contact problems. In this work...
متن کامل